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Abstract

The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric

regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate

determination of the wind direction where the concentration peaks, and thus, the location of nearby sources. Equations

for this method and associated confidence intervals are given. A nonsubjective method is given to estimate the only

adjustable parameter. A test of the method was carried out using cyclohexane data from 1997 at two sites near a heavy

industrial region in Houston, Texas, USA. According to published emissions inventories, 70% of the cyclohexane

emissions are from one source. Nonparametric regression correctly identified the direction of this source from each site.

The location of the source determined by triangulation of these directions waso500m from that given in the inventory.
Nonparametric regression is a powerful technique that has many potential uses in air quality studies and atmospheric

sciences. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem addressed here is estimating the wind

direction that gives a local maximum in the observed

average concentration of an atmospheric species, i.e.,

finding the directions of peaks in the concentrations.

This direction is taken as the direction of the source,

assuming that the source is not too distant. Finding the

location of a nearby source is important in identification

of the causes of local toxic ‘‘hot spots’’ and reconcilia-

tion of emission inventories observed concentrations, to

give two examples. Somerville et al. (1996) present a

classic parametric modeling approach to this problem.

In this paper, an alternative nonparametric approach is

taken. This approach is related to the kernel density

counting procedure proposed by de Haan (1999) for

certain air quality models. There is an enormous

statistical literature on nonparametric regression.

H.ardle (1990) gives a very good introduction to this

literature and the more practical aspects of the subject.

As will be seen, nonparametric regression is a powerful,

well-developed method with many possible applications

to air quality studies and, indeed, atmospheric sciences

in general.

It is very difficult to locate even a single strong peak

accurately from a simple scatter plot of the data versus

hourly resultant wind direction. This is seen in Fig. 1, a

scatter plot of hourly concentrations of cyclohexane

observed during 1997 at the Deer Park site near the

Houston ship channel in Houston, Texas, USA, an area

dominated by large refineries and petrochemical indus-

tries. The wind speed and direction were measured at the

site. The wind direction is the azimuth angle (measured

clockwise from north) that the wind is blowing from.
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The figure clearly shows high concentrations when the

wind comes from between 01 and 501 and between 3001

and 3501, but that is about all that can be said.

The usual method of analysis of the data in Fig. 1 is to

group the data into bins of width Dy based on wind
direction and calculate the average concentration in each

bin. The result can be displayed as a simple bar chart as

in Fig. 2 or as a polar chart. Polar charts are not used

here because small peaks are forced into an area near

the origin, making them hard to see. In Fig. 2 the bins

are 101 wide and start at 01. When the wind speed is low,

the direction is not well determined, consequently all

hours with wind speed o1mile/h were excluded from
Fig. 2. It is now clear that the data possess several peaks,

including a large peak around 3301; but a more precise

estimate of the peak location is not possible for reasons

discussed next.

Bar plots such as Fig. 2 have major limitations for the

problem at hand. The location of the peaks is highly

dependent on the choice of the bin size Dy and the

location of the boundaries of the bins. Peaks that

are closer together than 2Dymay not be resolved and the
location of a peak maximum cannot be estimated to

better than 7Dy; at best. This is less of a problem if Dy
can be made as small as a degree or two. With bins this

small, however, almost always there are many bins in the

less frequent wind directions that will have too few

observations. In practice, even with hourly data for an

entire year, bin size can seldom be made o101.
In addition to the large peaks, several small peaks are

seen in Fig. 2 at about 1701, 2201, 2601, and 2901.

Which, if any, of these are real peaks and which are just

random fluctuations in the data? Reliable error bars (or

confidence intervals) would help answer these questions.

For large peaks, confidence intervals would put bounds

on the peak height and provide a measure of the error in

peak location.

Based on the above discussion, a method is needed to

estimate the location of large peaks more precisely and

reliably separate peaks that are close to each other. The

method should produce statistical confidence intervals.

Finally, any parameters needed by the method, such as

bin size in the bar chart, should be estimable by a

reproducible, quantitative algorithm, to reduce the

subjectivity of the analysis.

Such a method with all these properties exists and is

known in the statistical literature as nonparametric

regression. The following section will briefly introduce

the method. This is followed by the application of the

method to cyclohexane data from two sites in Houston,

Texas. Cyclohexane is chosen to test the method because

70% of the industrial emissions in the region are known

to be from a single source. Thus, the intersection of two

lines drawn from each site in the direction of the largest

peak should be the location of this source. The success

of the method can be judged by how closely the

predicted position of the source corresponds to the

known location.

2. Nonparametric regression

2.1. Kernel estimators

One obvious improvement that overcomes some of

the problems of a simple bar chart is to average over a

sliding window of width Dy centered at y: Let the
observed average concentration for the time period

starting at ti be Ci; where i ¼ 1;y; n observations.

Further, let the resultant wind direction for the ith time

Fig. 1. Hourly cyclohexane measured at Deer Park during 1997

versus the azimuth of the wind direction.

Fig. 2. Bar chart of average cyclohexane in 101 bins starting at

zero.
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period be Wi; then the average concentration in the

sliding window centered at y is

%CðyÞ ¼ N�1
Xn

i¼1

Kðy� WiÞCi; ð1Þ

where KðxÞ ¼ 1; for x � Dy=2pxpx þ Dy=2; and zero
otherwise, and N is the number of data points inside the

sliding window. Fig. 3 shows the results of this method

applied to the same data as Fig. 1. This is certainly an

improvement over Fig. 2, but the curve in Fig. 3 is not

very smooth, which makes determining peak locations

difficult. The problem is that the function K gives equal

weight to all the measurements inside the sliding

window. A more reasonable approach would be to give

less weight to observations near the edges, as shown

next.

To generalize Eq. (1), it is important that Dy; also
called the smoothing parameter, appear explicitly in the

equation, so Eq. (1) is rewritten as

%Cðy;DyÞ ¼
Pn

i¼1 Kððy� WiÞ=DyÞCiPn
i¼1 Kððy� WiÞ=DyÞ

; ð2Þ

where KðxÞ ¼ 1 for �1
2
pxp1

2
; and zero otherwise. Note

that the denominator is simply a complicated way

of writing N; the number of data points for which
y� Dy=2pWipyþ Dy=2: In this form the equation can

be generalized by taking KðxÞ to be any continuous

function of x such thatZ
N

�N

KðxÞ dx ¼ 1: ð3Þ

There are many possible choices for K ; two of the most
often used are:

The Gaussian kernel

KðxÞ ¼ ð2pÞ�1=2expð�0:5x2Þ; �NoxoN; ð4Þ

and the Epanechnikov kernel

KðxÞ ¼ 0:75ð1� x2Þ; �1pxp1: ð5Þ

Both of these kernels will give maximum weight to

observations near y and less weight to observations

further away. The major difference between the two is

that the Gaussian kernel is defined over an infinite

domain and the Epanechnikov kernel is defined over a

finite range. For wind direction and other circular data

the Gaussian kernel is preferred. For data limited to a

finite range the Epanechnikov kernel has less bias at the

end points and is preferred, and, under certain condi-

tions, can be shown to converge to the true expected

value at the optimal rate.

The primary nonparametric regression estimator for

this paper is given by Eq. (2) with the Gaussian kernel.

Technically, this is an example of a Nadaraya–Watson

estimator, which is known to be consistent, that is, as

sample size increases the value of the estimate will

converge to the true value (H.ardle, 1990, p. 25). Fig. 4

shows the result of using this estimator on the Deer Park

cyclohexane data. The plot is much smoother than the

moving average plot in Fig. 3. The gray region

surrounding the curve in the figure is the 95%

confidence interval, which will be discussed later.

The smoothing parameter for Fig. 4 was chosen to

produce results somewhat comparable with the 101 bins

in Fig. 2. To this end, we define the smoothing

parameter in terms of the Full Width at Half Maximum

(FWHM), an intuitive measure of the width of the

kernel function. It is simply the full width of the peak in

K measured at the point where the curve has fallen to

half its value at the peak. For the Gaussian kernel, the

Fig. 3. Moving average cyclohexane concentrations calculated

using a 101 wide sliding window.

Fig. 4. Nonparametric regression of cyclohexane versus wind

direction using a Gaussian kernel with a 101 FWHM. Data with

wind speedo1mile/h are excluded. The gray region is the 95%
confidence interval.
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FWHM and smoothing parameter are related by

FWHM ¼
ffiffiffi
2

p
Dy: ð6Þ

Thus, since the FWHM is 10, the Gaussian smoothing

parameter (usually called the standard deviation) for

Fig. 4 is 10=
ffiffiffi
2

p
¼ 7:07: In the following, the FWHM

will be used as a more intuitive surrogate for the

smoothing parameter.

The connection of the smoothed data plot in Fig. 4

and the usual concept of regression is not immediately

obvious. What justification is there for calling this form

of data smoothing a regression? The answer is obvious if

one writes the simple linear regression formula in an

alternate way. The usual simple parametric regression

model with one variable is

y ¼ ax þ b þ e; ð7Þ

where a and b are parameters to be estimated and e is
random error. However, statisticians often prefer to

think of regression in terms of the expected value of y

given x; using the standard notation the simple straight
line regression equation becomes:

EðyjxÞ ¼ ax þ b: ð8Þ

In this way of looking at regression, Fig. 4 gives the

estimated expected value of the concentration (y) given

the wind direction (x), and thus can be thought of as a

regression model without parameters.

2.2. Choosing the smoothing parameter

The most important decision in nonparametric

regression is the choice of the smoothing parameter,

or, equivalently, the FWHM. If the FWHM is too large

the curve will be too smooth and peaks could be lost or

not resolved. If it is too small the curve will have too

many small, meaningless peaks dominated by noise or

large peaks may resolve into false multiple peaks.

There are several ways to select the best smoothing

parameter. This paper applies the cross validation

method (H.ardle, 1990, p. 152). For each observed wind

direction Wj ; j ¼ 1yn and associated concentration

Cj ¼ CðtjÞ use Eq. (2) to estimate the expected concen-
tration, but leaving out the jth observation, i.e.

%CjðWj ;DyÞ ¼

P
iaj KððWj � WiÞ=DyÞCiP

iaj KððWj � WiÞ=DyÞ
: ð9Þ

The optimal smoothing parameter is the one that

minimizes V ðDyÞ; the mean squared difference between
concentration estimated leaving out one observation and

the observed concentration:

V ðDyÞ ¼
Xn

j¼1

ðCj � %CjðWj ;DyÞÞ
2: ð10Þ

For the Deer Park data in Fig. 4, the minimum of V

occurs at a FWHM of 7. This is close to the value of 10

used in Fig. 4 but indicates that Fig. 4 may be somewhat

over-smoothed.

2.3. Confidence intervals

The confidence intervals in Fig. 4 are calculated from

formulae based on the asymptotic normal distribution

of the kernel estimates. The sample estimate of the

variance of the asymptotic distribution of %Cðy;DyÞ is
given by (H.ardle, 1990, pp. 98–101)

s2ðyÞ ¼
cK %sðyÞ
nDy %fðyÞ

;

where

cK ¼
Z

N

�N

K2ðxÞ dx ¼
1

2
ffiffiffi
p

p ; for a Gaussian K ;

%fðyÞ ¼ ðnDyÞ�1
Xn

i¼1

K
y� Wi

Dy

� �
;

and

%s2ðyÞ ¼ ðn %fðyÞÞ�1
Xn

i¼1

K
y� Wi

Dy

� �
ðCi � %Cðy;DyÞÞ2: ð11Þ

Thus, if ca is the ð100� aÞ-quantile of the normal

distribution (1.96 for a ¼ 0:025) the confidence limits on
%Cðy;DyÞ are given by

%Cðy;DyÞ7casðyÞ: ð12Þ

If a ¼ 0:025; then the expression above gives a two-sided
95% confidence interval. This is shown as the gray

shaded area of Fig. 4. From these confidence intervals, it

is obvious that the small peak near 170 is real but the

peaks near 260 and 290 are not. The peak near 220 is not

an obvious call and requires further analysis.

2.4. Bias and serial correlation in nonparametric

regression

This type of nonparametric regression has some

obvious drawbacks, chief among these being bias. Since

the data is being smoothed, the peaks usually will not

be quite as high or sharp as in reality. This bias is an

inevitable result of the smoothing. Bias can be estimated

by simply using the output curve in Fig. 4 as the input to

the nonparametric regression. The bias estimate is

the difference between the twice-smoothed curve and

the once-smoothed curve. This estimate for bias is called

the plug-in bias estimate. Calculated this way, the bias in

Fig. 4 is o10% at the peaks, and much less than this

elsewhere. Because the bias is small in the examples

considered here, it will be ignored in the rest of the

paper.

Atmospheric concentration data, especially the hourly

averages considered here, often have a high degree

of serial correlation induced by the effects of meteor-

ology and diurnal emission patterns. Fig. 5 shows the

R.C. Henry et al. / Atmospheric Environment 36 (2002) 2237–22442240



autocorrelation function for the concentration data used

in Fig. 4. The correlation with the next hour is 0.45 and

rapidly drops off rising again to 0.0835 at a lag of 24 h.

The autocorrelation function for the residuals of the

nonparametric regression in Fig. 4 is very similar as is

the autocorrelation function for the Clinton Dr. data.

This type of positive serial correlation may make the

actual confidence intervals larger than those estimated

by the methods of the previous section. Unlike bias, due

to the fact that the data is not evenly spaced because

only strong winds are used to estimate peaks, there is no

simple way to estimate the effects of serial correlation on

the confidence intervals. One must simply realize that

the estimated confidence intervals are almost surely a bit

too small. The possible effects of this on the results in

this paper are discussed next.

In this paper, the confidence intervals are used in two

ways; first, in a subjective way to judge if a peak is

merely noise or not. A small peak that has small

confidence intervals is likely to be a real peak, while a

peak with large confidence intervals is likely to be noise.

If the estimated confidence intervals are too small

because of serial correlation, the worst result would be

the possible acceptance of a peak as real when it is not.

The second use of confidence intervals in this paper is to

make a rough estimate of the uncertainty in the peak

location by drawing a horizontal line at the peak. The

intersection of this line with the upper confidence

interval curve gives the lower and upper limits on

the peak location. If the estimated confidence limits are

too small, then the range for the peak locations will also

be too small. The worst possible result is that the true

source may lie outside where it is predicted to be.

However, as shown below, this was not found to be a

problem in the application of these methods to the

Houston cyclohexane data, where the true locations of

the peaks were known.

For this paper, which uses peak locations to

determine the locations of an emission source, a

more significant question is if serial correlation in

the data increases bias in the estimate of the peak

location. One can show that this is not the case and thus

it has no effect on the estimates of source location that

are the main subject of this paper and the following

sections.

3. Application to 1997 Houston cyclohexane data

3.1. Data

Concentration data for cyclohexane and other volatile

organic compounds (VOCs) for the year 1997 were

obtained from the US Environmental Protection Agen-

cy’s (EPA) Photochemical Assessment Monitoring

Stations (PAMS) database. Hourly concentrations from

an automated gas chromatograph from two sites were

available. The two sites, Deer Park and Clinton Drive,

are shown in Fig. 8 in context with nearby 1997

emissions of VOCs taken from the EPA’s AIRS

database. This database does not have emissions of

individual species, unlike the Air Toxics Emissions

Inventory. Extracted from the air toxics inventory,

Table 1 lists all the emissions of cyclohexane for the year

1997 in Harris County, Texas, which includes the city of

Houston and the Houston Ship Channel, an area of

major petroleum refining and petrochemical industries.

Table 1 shows that one company, Phillips Petroleum, is

the source of almost 70% of the emissions in the

inventory. Thus, one would expect that high concentra-

tions of cyclohexane would be associated with wind

directions at the sites coming from this facility. Lines

drawn in the direction of the maximum cyclohexane

concentrations from the two sites should intersect near

the location given for the source in the inventory. The

accuracy of the nonparametric regression can be judged

by how close the estimated position is to the putative

position.

3.2. Results

Figs. 6 and 7 are the result of nonparametric

regression of cyclohexane on wind direction at the two

sites using optimal FWHM values. Much of the wind

data at the Clinton Drive site was missing. Thus, the

wind direction and speed data from Deer Park were used

in the analysis of both sites. The two sites are only

14.33 km apart and the terrain is very flat, so it is

expected that the wind data at one site will serve for

both. Fig. 6 is for Deer Park but it is not the same as

Fig. 4 for two reasons. Only data with wind speed >6
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miles/h (9.66 km/h) were used, instead of all data

>1mph as for Fig. 4. The optimal FWHM for data

with wind speed >6mph was calculated to be 5,

significantly smaller than 10 used in Fig. 4. The data

are restricted to periods with wind speed >6mph

because the Deer Park site is 9.25 km from the Phillips

source and the clearest impact will be seen if the travel

time from the source to the sampler iso1 h (Fig. 8). For
the same reason, the data from Clinton Drive wereT
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Fig. 6. Nonparametric regression of cyclohexane at Deer Park

using a Gaussian kernel with a FWHM of 5. Data are restricted

to periods with wind speed >6 miles/h (about 1 h travel time

from the largest source to the site). The gray region is the 95%

confidence interval.

Fig. 7. Nonparametric regression of cyclohexane at Clinton

Drive using a Gaussian kernel with a FWHM of 10. Data are

restricted to periods with wind speed >5 miles/h (about 1 h

travel time from the largest source to the site). The gray region

is the 95% confidence interval.
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restricted to hours where the wind speed is >5miles/h

(8 km/h) since the source is 7.91 km from the site. Using

the known location of the source to restrict the data is

not a case of unacceptable circular reasoning (using the

source location to estimate the source location). Data

for all wind speed >1mph could have been used to

estimate the location of the peaks and get an approx-

imate location of the source. From this the approximate

distance of the source to the sites can be estimated,

which would lead to the same result without prior

knowledge of the source location.

Table 2 gives the wind direction and the expected

concentration of the four largest peaks in Figs. 6 and 7.

The nonparametric regression calculations were carried

out for each whole degree from 0 to 359. Thus, to get the

entries in Table 2 it was necessary to interpolate to find

the peak locations with greater precision than 11. If the

data are equally spaced with spacing h and local

maximum Cðx0Þ; then the interpolated maximum is

at x0 þ ph; where

p ¼
ðCðx0 � hÞ � Cðx0 þ hÞÞ

2ðCðx0 � hÞ � 2Cðx0Þ þ Cðx0 þ hÞÞ
: ð13Þ

The interpolated maximum concentration is given by

Cðx0 þ phÞE 0:5pðp � 1ÞCðx0 � hÞ þ ð1� p2ÞCðx0Þ

þ 0:5pðp þ 1ÞCðx0 þ hÞ: ð14Þ

Both these formulae are from Abramowitz and Stegun

(1972).

3.3. Comparison to known sources

The sources in Table 1 can now be compared with the

peaks in Table 2. A measure of the uncertainty of the

peak locations is helpful in this comparison. Table 2

gives very conservative ranges for the peak locations

that are calculated by drawing a horizontal line through

the peak and reading its intersection with the upper

confidence boundary. Not surprisingly, at both sites the

largest peak has an azimuth consistent with the location

of the largest source in the inventory. For Clinton Drive,

the second largest source in the inventory also lies in the

azimuth range of the largest peak in Fig. 7. This may

explain why this peak is so broad. The second largest

peak for Clinton Drive is at 160, which corresponds well

with Valero Refining in the inventory. Valero only

accounts for 4.79% of the emissions but it is located

only 1.17 km from the monitoring site. It seems reason-

able to associate this peak with this source. The

remaining two small peaks in Fig. 7 do not correspond

to any source in Table 1. These could be emissions

associated with nonindustrial sources such as roadways.

At Deer Park, the location of the second largest peak in

Fig. 6 corresponds closely with Enichem Americas in

Table 1. However, the location of the source is given an

accuracy of only 11 km, so one cannot definitely

associate this peak with this source. The remaining

two small peaks in Fig. 6 do not correspond to any

sources in Table 1.

Table 2

Largest peaks in the nonparametric regression of cyclohexane on wind direction, Figs. 6 and 7

Maximum Deer Park Maximum Clinton Drive

Azimuth Azimuth range Azimuth Azimuth range

Peak 1 14.953 329.12 325.64–332.68 7.197 86.43 80.56–92.76

Peak 2 5.391 43.72 40.68–46.96 4.251 160.04 153.90–166.21

Peak 3 2.197 21.60 15.51–25.01 1.147 332.63 326.37–340.20

Peak 4 1.775 168.89 165.87–171.44 1.027 240.95 235.12–248.86

Fig. 8. The location of the Phillips Petroleum source in the

inventory is shown as a star; the estimated location is marked as

*. The Deer Park site is the � and the Clinton Drive site is the

+. The gray shaded areas are water bodies. The circles are

VOC sources with the area proportional to the annual

emissions. Dash-dotted lines are railroads.
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3.4. Location of the largest source

The location of the Deer Park and Clinton Drive sites

as given by the AIRS database are 29.66941N,

95.12811W, and 29.73331N, 95.25691W, see Fig. 8.

Using these positions and the azimuth of the largest

peaks the estimated location of the source is 29.73781N,

95.17511W. (All calculations involving longitude and

latitude and distances were performed using functions

from the Matlab Mapping Toolbox.) The distance

between this and the location given in Table 1 is

0.436 km. As seen from the Deer Park site this distance

corresponds to an error of 2.71, or 3.21 as seen from

Clinton Drive. The best that could be done from the bar

chart in Fig. 2 would be to estimate the location to

7201. It is fair to say that the nonparametric regression
method is a major improvement and that the source

location predicted by the nonparametric regression is in

good agreement with the inventories. Now that this

technique has been validated, it may be applied to other

chemical species in the air that are not dominated by a

single source. The results will help reconcile the

emissions inventories to observed concentrations.

4. Discussion

In obvious extension of this method, the wind

direction analysis presented here can be applied to the

source contributions estimated from receptor models.

The results should be sharper that using chemical species

that usually have many sources. Previous work on

comparison of the emissions inventory for the Houston

ship channel relied on simple bar charts to determine the

direction of sources (Henry et al., 1997). Later work of

this type should benefit from the methods presented

here. Nonparametric regression techniques could also be

used in other air quality applications, such as trend

analysis of time series or simply providing data

smoothing for exploratory analysis of air quality data.

This work has demonstrated the usefulness of non-

parametric regression of air quality data on wind

direction. Nonparametric regression allows for accurate

determination of the wind direction of maximum

concentration. However, ground level concentrations

are function of factors other than wind direction. For

elevated sources, ground level concentrations can be a

complex function of emission rates, wind speed and

atmospheric stability. Indeed, scenarios could be con-

structed where the direction of the maximum average

concentration does not correspond to the direction of

the source. Such situations are probably rare, but a

method that included other parameters such as wind

speed would be desirable. Simultaneous nonparametric

regression of concentrations on wind direction and wind

speed is possible and could help throw light on, among

other things, the distance to the sources and whether

the sources are ground level or elevated. This will be

the subject of a sequel to this paper. More can be done

with the confidence intervals to determine if a peak is

real or noise and to estimate the variance of the peak

location.
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